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Abstract 

Given a problem to get a group of unmanned vehicles from a starting location to a goal in 3 dimensions, 

we were able to do so without a home base for communication.  Starting out with full map knowledge, 

the group would elect a leader, plan a path using Rapidly-Exploring Random Trees (RRTs), and move to 

the goal using Artificial Potential Field.  The simulation was created in the MASON multi-agent 

simulation framework, and we were able to show that RRTs are a viable solution for path planning in 3 

dimensions.  We were also able to show how certain input parameters affect the ability to plan paths 

quickly. 

Background 

Path planning in 3 dimensions is significantly harder than in 2 dimensions, because the third dimension 

adds many more possible paths to the goal.  It is almost impossible to find an exact solution to this 

problem in real time, and even using approximation algorithms, calculating such paths in real time is 

difficult [1].  The path planning algorithm used must then almost certainly be probabilistic and will not 

provide a guaranteed shortest path.  The most appropriate algorithm that we found for this calculation 

was Rapidly-Exploring Random Trees (RRTs) [2].   

RRTs work by iteratively picking a random point in 

space and adding a branch onto the existing tree that 

extends towards that point.  The tree initially consists 

of only the root, which is the starting point for the 

path.  As branches are added, they are checked to 

make sure they meet the requirements that the 

unmanned vehicle (UV) can traverse from one state to 

the next (i.e. the turning radius is not too small) and 

that the path from one state to the next does not 

cause the UV to crash into any obstacles.  This is an 

important feature of RRTs in that they can build paths 

where the UV is guaranteed to be able to follow the 

path.  When non-holonomic constraints are put on the 

system, it dramatically decreases the possible moves 

from one state to the next, and taking these 

constraints into account while building the path saves 

the effort of having to recalculate the path because of the inability to follow the path.  Eventually a 

branch is added that extends to the goal.  Once this happens, the branch can be followed back to the 

root; this is the path returned from the RRT algorithm.  It is important to note that the random point in 

space is chosen before the branch on which to add it.  If the branch is chosen first, the tree tends to 

search space that has already been explored.  RRTs have the nice property that they tend to explore 

Figure 1: Path Planning using RRT algorithm 
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open spaces. Figure 1 shows an example RRT being built, and the red points would be returned as the 

path from start to the goal location. 

MASON Simulation Framework 

The MASON framework [3] is a discrete event framework written in Java that allows for rapid 

development of multi-agent simulations.  It follows the Model-View-Controller paradigm.  It can 

produce logs, track changes to variables over time, and produce graphics.  It is easy to control 

parameters, even allowing for manually changing them during runtime.  Simulations can be started, 

paused, saved to disk, and resumed at a later date.  Graphics can also be turned off for faster 

simulations; this approach was taken after our design of experiments to calculate potentially 

troublesome or interesting relationships between specific input parameters and output parameters.   

The simulations themselves were programed as follows:  All UVs are assumed to be point objects with a 

heading.  Movement would consist of moving along the heading and being able to turn the heading (in 

any direction) over time as allowed by the minimum turning radius.  All obstacles are assumed to be 

point objects with different radii.  Coming into contact with an obstacle’s surface was assumed to be a 

crash.  UVs could also come into contact with one another; this was assumed to be a different type of 

crash.  Both types of crashes were captured.   

Each UV was given full map knowledge before the simulation.  However, location of other UVs was only 

able to be obtained by the other UVs broadcasting their locations.  Only point to point communication 

was allowed and this was bounded by a maximum communication distance (variable over different 

experiments).  Communication was considered to be imperfect and any partial message was dropped; 

this communication error rate was also variable over the experiments.  Leader determination must 

occur locally within the agents themselves; no external decision maker is available to the UVs.  Simple 

maps were used with minimal obstacles to prove the viability of RRTs; harder maps would have tested 

more of the shortcomings of movement by Artificial Potential Field (APF). 

Analytical Methodology 

In order to learn about this complex system, our analysis is accomplished in three phases: Designing 

simulations (aka “experiments”), running each simulation, and then evaluating different metamodels by 

best-fitting simulation results. 

1 - Design of experiments 

Our simulation contains 25 input factors and 8 output factors (listed in Appendix A).  The authors utilized 

the SEED Center for Data Farming template for data design [4].  The purpose was to design a set of 

experiments that was Nearly Orthogonal and Balanced (NOB) which provides the framework for finding 

correlations between input and output factors while minimizing the overall number of design points.  

We were able to search for first-order interactions between inputs, as well as quadratic effects. The 

worksheet generated 512 such experiments over the full range of input values in each category (input 

ranges were chosen either arbitrarily or with domain knowledge based on research into the UV field).   

2 – Ran simulations with replications 



We simulated these experiments using MASON and captured the results.  Each simulation was run until 

it met a Stopping Condition, which defined colloquially are “Mission Complete”, or “Ran out of time.”  

3 – Evaluated meta-modes 

These results were then imported into JMP Pro [4], where we were able to find interesting relationships 

between input and output factors.  Significant relationships are discussed below. 

Findings 

The most significant factor that goes into finding a path quickly is the GOAL_PERCENT.  This number 

represents probability that the “random” point in space added to the RRT represents the goal.  The 

higher this percent, the more often the tree tries to grow directly towards the goal.  Results show that if 

goal_percent is too small (below 10%), a higher Tree Size will be produced. 

Variable Profiler of Significant Variables on predicting Tree Size 

 

This graphic shows the influence of goal_percent on Tree Size compared to the other statistically 

significant variables. 

 

It is our hypothesis that as the maps get harder, having the GOAL_PERCENT be too large would increase 

the tree size dramatically; this should be tested in later experiments. 

In our experiments, UVs were completely able to avoid each other.  No UV crashes were reported in any 

of the experiments.  Some experiments showed higher likelihood for UVs being within a “warning 

range,” but no input factors seemed to correlate with this output.  However, there were sometimes 

obstacle crashes.  The most significant feature that determined obstacle crashes was the virtual force 

applied by the obstacle in the APF algorithm.  This is both intuitive and fairly obvious as to why that 

would lead to more crashes. 

The number of paths calculated was another metric captured.  One of the features of the APF algorithm 

is that it can get stuck in local minima where the force applied to it from all directions is essentially 

summed to 0.  When this happens, the UV must find another path to the goal and this requires 

recalculation of the path.  The way for a UV to know whether or not it is stuck is to determine how much 



it has moved over some amount of time.  This calculation involves keeping a certain number of previous 

moves and having some minimum distance that must have been moved over that time period.  

We’ve determined that the significant factors that can predict “Number of Paths Calculated” are: 

Last_moves_kept, minimum_disntance_moved, and uv_max_velocity.  

 More investigation is required, but we believe these results are related to following phenomenon:  as 

UVs incorrectly assume they are in a local minimum when in fact, given their maximum velocity and the 

number of moves kept, they are simply unable to move the required minimum distance in time. 

The last significant finding was that the radio range was the biggest factor in determining the time for all 

UVs to finish.  As the radio range increased past a certain limit, UV missions almost always failed. 

  We believe this is a by-product 

of the simulation itself in that 

UVs only considered themselves 

to have reached the goal if the 

center point between all known 

UVs reached the goal.  As the 

radio range increases, the UVs 

are able to communicate with 

those that were 

stuck/lost/crashed at significant 

distances away from the goal.  

This causes the UVs that reached 

the goal to consider themselves 

to not have finished either.  

Therefore, we’ve identified that 

knowledge of distance from other UVs is critical for mission success. 

Recommendations and Future Work 

Since GOAL_PERCENT is most significant factor for determining the tree size, it might be possible to 

parameterize it and tune it depending on specific map properties (number of obstacles, percent free 

space, etc.).  It may also be possible to tune the maximum branch size for the tree to get longer 

branches.  It makes sense that in open space this would lead to smaller (by number of nodes) trees.  For 

future work, the authors would like to test out tuning these parameters on different maps.  The authors 

would especially like to try starting with very high maximum branch size and gradually make it smaller as 

suitable paths can’t be found. 

The authors would also like to try this set of algorithms with more realistic movement, specifically 

quadcopter movement.  Taking quadcopter limitations into consideration when planning the path with 

RRTs would be a viable next step for the development of this algorithm set for UV movement. 

 



The authors would also like to use this set of algorithms when the UVs do not know the full map and 

obstacles are instead discoverable.  This has been previously used in 2 dimensions with success, so 3 

dimensions should be possible.   
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Appendix A 

Input factors: 

• radio_range 

• children_timeout 

• alive_timeout 

• time_per_move 

• send_info_delta 

• clock_tick 

• uv_mass 

• uv_max_velocity 

• uv_centripetal_force 

• uv_max_acceleration 

• last_moves_kept 

• minimum_distance_moved 

• goal_radius 

• sink_radius 

• goal_percent 

• obstacle_push_range 

• obstacle_push_constant 

• obstacle_push_type 

• uv_push_range 

• uv_push_constant 

• uv_push_type 

• uv_pull_range 

• uv_pull_constant 

• force_mask 

• coms_loss 

Output factors: 

• Time spent in the warning zone for any 

obstacle 

• Time spent crashing into any obstacle 

• Time spent in the warning zone for any UV 

• Time spent crashing into any UV 

• Number of path calculations 

• Number of simulation steps taken to get to 

the goal 

• Number of UVs that found the goal 

• Average tree size (by number of nodes) 

 


